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LARGE DEVIATIONS FOR DIFFUSIONS DEPENDING
ON SMALL PARAMETERS: A STOCHASTIC CONTROL METHOD

Wendell H. Fleming'

ABSTRACT

This paper considers stochastic differential equations depending on
a small parameter €, which enters as a coefficient in the noise term of the
equation. The Ventcel-Freidlin estimates give an asymptotic formula as
€ + 0 for the probability that a solution trajectory hits a given éompact
set B during a given time interval. A stochastic control method to obtain

such estimates is outlined. Detailed proofs are given elsewhere.

1. The problem. Consider a Markov diffusion process Ee on
n-dimensional R" which obeys the stochastic differential equations

(1.1) aE® = b[t,E%(t)lat + /& oft,E5(t)law, s <t,

with initial data Ee(s) = Xx. Here w is an n-dimensional brownian motion

and € a positive parameter. Let B be a compact set, B CZR“, and let T;

denote the first time t such that ES(t) €EB. If E°(t) ER® - B for all

t >s we set T; = 40, Given T > s, let

€

€
a = P(TB <T).

(1.2)
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Let us also consider the unperturbed system

(1.3) ac® = v[t,E%¢)at, s <t,

with fhe same initial data Eo(s) =i TP Tg > T, then q; +0 as € -+ 0.
The Ventcel-Freidlin estimates [3], [5] give a more precise statement about
the rate of convergence to 0 of q;, under certain assumptions about the
coefficients b,0 in (1.1) and the set B. A different method, based on
stochastic control ideas, was used in [1], [2] to obtain estimates of
Ventcel-Freidlin type. In this note we outline this stochastic control
method, as it applies to the problem of estimating q;.

2. Upper and lower estimates. Let us assume that b is Lipschitz

n+1’ and that O together with its inverse o1 are bounded and

on R
Lipschitz. Some results in which O degenerates in a particular way appear

in [4]. Let a = 00', and consider the variational integrand
(2.1) L(t,0,0) = 3 (b(£,0) - §)'a™ (£,0) (b(t,0) - §).
Let

Iy = {6 € c([s,71:8™): ¢(s) = x, 36 €[s,7] 3 ¢(6) €B},

T "
(2.2) I; = min j L{t,4(¢),9(t)]at.
T s

B
(The integral on the right side is defined to be +~ if ¢ is not

absolutely continuous.) Let
€ €
(2.3) IB = -€ log ag-

Theorem 1. I < lim inf 1;.
el el = o0

This theorem gives an upper estimate for q;. We shall outline a
stochastic control proof in §3, and refer to [2] for details.

In order to state a lower estimate, we make the following additional

assumption: There exists a relatively open set Fg CZPB such that




T ;
(2.4) inf I L{t,(t),¢(t)]dt = Ip.
rgs

By relatively open we mean that given ¢ EEP there exists § > 0 such that
¥ €c(ls,T1;R"), ¥(s) = x and |[[v-9[] <& imply v er

€
> 1lim sup I

Theorem 2. If (2.4) holds, then I B
0

B
Theorem 2 is an immediate consequence of the first Ventcel-Freidlin
estimate [3, p. 332]. That estimate is rather easily obtained from the

Girsanov formula. On the other hand, the usual proof of Theorem 1 is based

on a somewhat more technically complicated second Ventcel-Freidlin estimate
[3, p. 334]. Our method furnishes an alternative proof, as well as a
different intuition for arriving at such results.

From Theorems 1 and 2 one has Ie -+ IB as € =+ 0, which is the

B
desired result about the probability of large deviations.

3. Stochastic control method. Let us fix T > 0 and consider

0<s<T. Let Q= (0,T) X (R®-B), and write qB (s ,X). Then
GECl 2(Q) and satisfies in Q the backward partlal differential equation
aqg ¢ % 82q§ E 9q§
(3.1) —+ = &, . (8,x) + blaz] ——= 0,
9s 2 i,3=1 ij BxiaxJ je=1 1 axi
The function I; = -€ log q; satisfies the nonlinear equation
axg 2 aa¢5 3
(3.2) e Z a; (s,x) -~ 3 + H(s,x,9¢;) = 0,
i1,9=1 * =
where for each row vector p
(3.3) H(s,x,p) = - %-pa(s.x)p' + p-b(s,x).

The function H(s,x,-) is dual to L(s,x,*), in the sense of duality for
concave and convex functions. If one puts formally € = 0 in (3.2), one

gets the Hamilton-Jacobi equation associated with the variational integrand L.
The fact that F includes only curves ¢ which reach B by time T
corresponds formally to the condition qB(T x) =0 for x ¢ B, and hence

I (T x) = 4©, The connection with the Hamilton-Jacobi equation indicates,




but of course does not prove, results of the kind stated in §2.

Lemma. Let B = 9D, where D CRn is open, bounded with 02

boundary dD. Thez ib < lim inf Ig, for any (s,x) € (0,T) X D.
e+0 g
This result is proved in [2, §7], by an argument which we sketch

below. From the Lemma, Theorem 1 is obtained as follows. There exist
D,CD,C ..., with union R" - B, such that 3D =B U {|x| = n}, with B
of class 02 and ﬁn contained in the n—l-neighborhood of B. We take

€ €
Bn = BDn and note thaE’qB < an,

€ €

lim inf I_ > lim inf I_ > I_ .
GG T T e . hT
Moreover, IBn g IB as n + ®,

The proof in [2, §7] of the Lemma is based on a "penalty" function
method. Let ®&(x) be Lipschitz, with &(x) > 0 for x § 3D, &(x) = 0 for
x €0D. Let J°(s,x) Dbe the solution of (3.2) in (0,T) X D, with
Je(s,x) =0 for 0<s<T, x €3, JE(T,x) = ®(x). Then Je(s,x) satis-
fies the dynamic programming equation for an optimal stochastic control
problem in which the drift term b{t,£5(t)] in (1.1) is replaced by an
arbitrary, bounded, nonanticipative control process v(t). Instead of (1.1),

one now has the stochastic differential equation
dn = v(t)dt + /€ o[t,n(t)]dw.
The quantity to be minimized is

0
E{J Lt,n(t),v(t))dt + (6,n(8)]}, t
8
where © = min(T, exit time from D of n(t)). The minimum of this ex-

€
pression is Je(s,x). It is shown in [2] that 1lim inf J > J, where J(s,x)
€+0
0

is the minimum of J L[t.¢(t).&(t)]dt + ¢[0,6(0)] taken among all (¢,0)
s

with ¢(s) = x and either 6 =T or 6 < T, ¢(60) E3D. For M = 1,2,...
M My for fixed V¥, and write J’e = JEM, J = JM. It is

easy to show that I < lim inf JM. Moreover, JEM < Ie. Then JM < lim inf I;
Moo €+0

we now take ¢ = ¢




for each M, from which the Lemma follows.
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